Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Bin Wu ${ }^{a *}$ and Yong-Sheng Guo ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Applied Chemistry, Zhejiang University of Sciences, Hangzhou 310018,
People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, Zhejiang University, Yuquan
Campus, Hangzhou 310027, People's Republic of China

Correspondence e-mail:
chemdpwu@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.024$
$w R$ factor $=0.056$
Data-to-parameter ratio $=18.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

A tetranuclear zinc-cerium complex: diaquaoctaμ - α-methylacrylato-di- α-methylacrylatodipyridinediceriumdizinc

In the title complex, a centrosymmetric carboxylate-bridged tetranuclear zinc-cerium derivative, $\left[\mathrm{Zn}_{2} \mathrm{Ce}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{10^{-}}\right.$ $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$], the $\mathrm{Ce}^{\text {III }}$ and $\mathrm{Zn}^{\text {II }}$ ions are bridged by two bidentate carboxylato groups [Ce $\cdots \mathrm{Zn} 4.139$ (1) \AA], while the Ce ions are linked through the three bidentate carboxylate groups [Ce...Ce 4.430 (1) Å]. The Ce atoms are ninecoordinate and the coordination polyhedron is a distorted tricapped trigonal prism. The Zn atoms are four-coordinate with a distorted tetrahedral geometry.

Comment

The study of heterometallic complexes containing d-transition metal and lanthanide(III) cations connected by bridging ligands is being actively pursued because of their relevance in solid-state technology and as models for magnetic studies (Margeat et al., 2004; Wu et al., 2003; Tang et al., 2002). In most polynuclear compounds, the d-transition metal ions and lanthanide ions are bridged by multi-group ligands (Ma et al., 2000; Margeat et al., 2004). In this paper, we report the synthesis and crystal structure determination of the title novel complex, (I), in which the $\mathrm{Zn}^{\text {II }}$ and $\mathrm{Ce}^{\mathrm{III}}$ cations are bridged by α-unsaturated carboxylate groups.

(I)

Complex (I) consists of a discrete tetranuclear $\mathrm{Zn}_{2} \mathrm{Ce}_{2}$ core bridged by α-methylacryl groups. The Zn and Ce ions are bridged by three carboxyl groups, while the symmetry-related Ce ions are linked by two carboxyl groups. Each $\mathrm{Ce}^{\mathrm{III}}$ ion is coordinated by nine O atoms from one chelating and five bridging carboxyl groups, and from a water molecule. The nine O atoms form a distorted tricapped trigonal prism, with atoms

Figure 1
A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. All H atoms have been omitted for clarity. [Symmetry code: (i) $1-x, 1-y, 1-z$.]
$\mathrm{O} 2, \mathrm{O} 4, \mathrm{O} 6, \mathrm{O} 8, \mathrm{O}^{\mathrm{i}}$ and O 9 forming a trigonal prism with atoms O7, O10 and O11 as the caps [symmetry code: (i) $1-x, 1-y, 1-z$]. Each $\mathrm{Zn}^{\mathrm{II}}$ ion in the complex is fourcoordinated by three O atoms from three carboxyl groups and an N atom from a pyridine group. The coordination polyhedron of the Zn ion is a slightly distorted tetrahedron.

In the molecule of (I), the water molecule also forms a hydrogen bond with an O atom of the carboxyl group, with O11...O9 2.666 (3) Å.

Experimental

$\mathrm{Ce} L_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ [$860 \mathrm{mg}, 2.0 \mathrm{mmol} ; \mathrm{HL}$ is $\left.\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}\right]$ and $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(297 \mathrm{mg}, 1.0 \mathrm{mmol})$ were dissolved in $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{ml})$, and the pH was adjusted to 4.0 using HL . Pyridine solution (1.0 ml , $1 M)$ was then added. After filtration, the filtrate was allowed to stand at room temperature and single crystals of (I) suitable for X-ray analysis were obtained after two weeks. Analysis, calculated: C 41.24, H 4.43, N 1.92\%; found: C 41.20, H 4.31, N 2.01%. Spectroscopic analysis: IR (KBr, $\left.v, \mathrm{~cm}^{-1}\right): 1454,1561,1647$.

Crystal data

$\begin{aligned} & {\left[\mathrm{Zn}_{2} \mathrm{Ce}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{10}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}-\right.} \\ & \left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \end{aligned}$	$\begin{aligned} & Z=1 \\ & D_{x}=1.596 \mathrm{Mg} \mathrm{~m}^{-3} \end{aligned}$
$M_{r}=1456.05$	Mo $K \alpha$ radiation
Triclinic, $P \overline{1}$	Cell parameters from 5723
$b=11.9997$ (3) \AA	$\theta=3.0-27.4{ }^{\circ}$
$c=12.4604$ (4) \AA	$\mu=2.33 \mathrm{~mm}^{-1}$
$\alpha=99.3360$ (10) ${ }^{\circ}$	$T=273$ (2) K
$\beta=106.3000(10)^{\circ}$	Prism, colourless
$\gamma=101.5560(10)^{\circ}$	$0.30 \times 0.20 \times 0.17 \mathrm{~mm}$
$V=1515.09$ (8) \AA^{3}	
Data collection	
Rigaku RAXIS-RAPID diffractometer	6882 independent reflections 6062 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.022$
Absorption correction: multi-scan	$\theta_{\text {max }}=27.4^{\circ}$
(ABSCOR; Higashi, 1995)	$h=-14 \rightarrow 14$
$T_{\text {min }}=0.578, T_{\text {max }}=0.673$	$k=-15 \rightarrow 15$
14807 measured reflections	$l=-16 \rightarrow 16$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0308 P)^{2}\right. \\
&+0.3646 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.003 \\
& \Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.42 \mathrm{e} \AA^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$S=1.04$
6882 reflections
366 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{Ce}-\mathrm{O} 2$	$2.4183(16)$	$\mathrm{Ce}-\mathrm{O} 10$	$2.5432(17)$
$\mathrm{Ce}-\mathrm{O} 4$	$2.4614(19)$	$\mathrm{Ce}-\mathrm{O} 11$	$2.6004(19)$
$\mathrm{Ce}-\mathrm{O} 6$	$2.4474(17)$	$\mathrm{Zn}-\mathrm{O} 1$	$1.931(2)$
$\mathrm{Ce}-\mathrm{O} 7$	$2.5674(18)$	$\mathrm{Zn}-\mathrm{O} 3$	$1.956(2)$
$\mathrm{Ce}-\mathrm{O} 8$	$2.6385(15)$	$\mathrm{Zn}-\mathrm{O} 5$	$1.9409(19)$
$\mathrm{Ce}-\mathrm{O} 8^{\mathrm{i}}$	$2.5652(15)$	$\mathrm{Zn}-\mathrm{N} 1$	$2.0658(19)$
$\mathrm{Ce}-\mathrm{O} 9$	$2.5641(17)$		
$\mathrm{O} 2-\mathrm{Ce}-\mathrm{O} 4$	$76.57(7)$	$\mathrm{O} 7-\mathrm{Ce}-\mathrm{O} 8$	$49.94(5)$
$\mathrm{O} 2-\mathrm{Ce}-\mathrm{O} 6$	$79.16(7)$	$\mathrm{O} 7-\mathrm{Ce}-\mathrm{O} 8^{\mathrm{i}}$	$110.20(5)$
$\mathrm{O} 2-\mathrm{Ce}-\mathrm{O} 7$	$78.35(6)$	$\mathrm{O} 7-\mathrm{Ce}-\mathrm{O} 9$	$70.56(6)$
$\mathrm{O} 2-\mathrm{Ce}-\mathrm{O} 8$	$128.29(6)$	$\mathrm{O} 7-\mathrm{Ce}-\mathrm{O} 10$	$115.64(6)$
$\mathrm{O} 2-\mathrm{Ce}-\mathrm{O} 8^{\mathrm{i}}$	$148.86(6)$	$\mathrm{O} 7-\mathrm{Ce}-\mathrm{O} 11$	$114.14(7)$
$\mathrm{O} 2-\mathrm{Ce}-\mathrm{O} 9$	$84.03(6)$	$\mathrm{O} 8-\mathrm{Ce}-\mathrm{O} 8^{\mathrm{i}}$	$66.97(6)$
$\mathrm{O} 2-\mathrm{Ce}-\mathrm{O} 10$	$72.22(6)$	$\mathrm{O} 8-\mathrm{Ce}-\mathrm{O} 9$	$79.42(5)$
$\mathrm{O} 2-\mathrm{Ce}-\mathrm{O} 11$	$137.89(7)$	$\mathrm{O}-\mathrm{Ce}-\mathrm{O} 10$	$125.93(5)$
$\mathrm{O} 4-\mathrm{Ce}-\mathrm{O} 6$	$77.73(7)$	$\mathrm{O} 8-\mathrm{Ce}-\mathrm{O} 11$	$75.34(6)$
$\mathrm{O} 4-\mathrm{Ce}-\mathrm{O} 7$	$72.93(7)$	$\mathrm{O} 8-\mathrm{Ce}-\mathrm{O} 9$	$71.75(5)$
$\mathrm{O} 4-\mathrm{Ce}-\mathrm{O} 8$	$86.82(6)$	$\mathrm{O} 8-\mathrm{Ce}-\mathrm{O} 10$	$77.28(5)$
$\mathrm{O} 4-\mathrm{Ce}-\mathrm{O} 8^{\mathrm{i}}$	$134.43(6)$	$\mathrm{O} 8-\mathrm{Ce}-\mathrm{O} 11$	$67.54(6)$
$\mathrm{O} 4-\mathrm{Ce}-\mathrm{O} 9$	$141.34(7)$	$\mathrm{O} 9-\mathrm{Ce}-\mathrm{O} 10$	$50.80(5)$
$\mathrm{O} 4-\mathrm{Ce}-\mathrm{O} 10$	$144.57(6)$	$\mathrm{O} 9-\mathrm{Ce}-\mathrm{O} 11$	$137.89(6)$
$\mathrm{O} 4-\mathrm{Ce}-\mathrm{O} 11$	$70.14(8)$	$\mathrm{O} 10-\mathrm{Ce}-\mathrm{O} 11$	$126.19(7)$
$\mathrm{O} 6-\mathrm{Ce}-\mathrm{O} 7$	$146.35(6)$	$\mathrm{O} 1-\mathrm{Zn}-\mathrm{O} 3$	$115.89(10)$
$\mathrm{O} 6-\mathrm{Ce}-\mathrm{O} 8$	$144.42(6)$	$\mathrm{O} 1-\mathrm{Zn}-\mathrm{O} 5$	$124.07(9)$
$\mathrm{O} 6-\mathrm{Ce}-\mathrm{O} 8$	$101.99(5)$	$\mathrm{O} 1-\mathrm{Zn}-\mathrm{N} 1$	$98.50(8)$
$\mathrm{O} 6-\mathrm{Ce}-\mathrm{O} 9$	$131.09(6)$	$\mathrm{O} 3-\mathrm{Zn}-\mathrm{O} 5$	$112.78(10)$
$\mathrm{O} 6-\mathrm{Ce}-\mathrm{O} 10$	$80.30(6)$	$\mathrm{O} 3-\mathrm{Zn}-\mathrm{N} 1$	$101.22(8)$
$\mathrm{O} 6-\mathrm{Ce}-\mathrm{O} 11$	$69.32(6)$	$\mathrm{O} 5-\mathrm{Zn}-\mathrm{N} 1$	$97.50(8)$

Symmetry codes: (i) $1-x, 1-y, 1-z$.
All non-H atoms were initially located in a difference Fourier map. All methyl H atoms were then constrained to an ideal geometry with $\mathrm{C}-\mathrm{H}$ distances of $0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C})$, but each group was allowed to rotate freely about its $\mathrm{C}-\mathrm{C}$ bond. The $=\mathrm{CH}_{2} \mathrm{H}$ atoms and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. Water H atoms were restrained in idealized positions, with $\mathrm{O}-\mathrm{H}$ distances of 0.85 (1) \AA and $\mathrm{H} \cdots \mathrm{H}$ distances of 1.39 (1) \AA.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

This work was partly supported by the Analyse Fund of Zhejiang Province, China.

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Ma, B. Q., Gao, S., Bai, O., Sun, H. L. \& Xu, G. X.(2000). J. Chem. Soc. Dalton Trans. pp. 1003-1004.

metal-organic papers

Margeat, O., Lacroix, P. G., Costes, J. P., Donnadieu, B. \& Lepetit, C. (2004). Inorg. Chem. 43, 4743-4750.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tang, J. K., Li, Y. Z., Wang, Q. L., Gao, E. Q., Liao, D. Z., Jiang, Z. H., Yan, S. P., Cheng, P., Wang, L. F. \& Wang, G. L.(2002). Inorg. Chem. 41, 2188-2192.
Wu, B., Lu, W. M. \& Zheng, X. M. (2003). J. Coord. Chem. 56, 65-70.

