Received 2 August 2004 Accepted 6 August 2004

Online 13 August 2004

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Bin Wu<sup>a</sup>\* and Yong-Sheng Guo<sup>b</sup>

<sup>a</sup>Department of Applied Chemistry, Zhejiang University of Sciences, Hangzhou 310018, People's Republic of China, and <sup>b</sup>Department of Chemistry, Zhejiang University, Yuquan Campus, Hangzhou 310027, People's Republic of China

Correspondence e-mail: chemdpwu@yahoo.com.cn

### **Key indicators**

Single-crystal X-ray study T = 273 K Mean  $\sigma$ (C–C) = 0.005 Å R factor = 0.024 wR factor = 0.056 Data-to-parameter ratio = 18.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# A tetranuclear zinc-cerium complex: diaquaocta- $\mu$ - $\alpha$ -methylacrylato-di- $\alpha$ -methylacrylatodipyridine-diceriumdizinc

In the title complex, a centrosymmetric carboxylate-bridged tetranuclear zinc-cerium derivative,  $[Zn_2Ce_2(C_4H_5O_2)_{10}-(C_5H_5N)_2(H_2O)_2]$ , the Ce<sup>III</sup> and Zn<sup>II</sup> ions are bridged by two bidentate carboxylato groups [Ce···Zn 4.139 (1) Å], while the Ce ions are linked through the three bidentate carboxylate groups [Ce···Ce 4.430 (1) Å]. The Ce atoms are nine-coordinate and the coordination polyhedron is a distorted tricapped trigonal prism. The Zn atoms are four-coordinate with a distorted tetrahedral geometry.

### Comment

The study of heterometallic complexes containing *d*-transition metal and lanthanide(III) cations connected by bridging ligands is being actively pursued because of their relevance in solid-state technology and as models for magnetic studies (Margeat *et al.*, 2004; Wu *et al.*, 2003; Tang *et al.*, 2002). In most polynuclear compounds, the *d*-transition metal ions and lanthanide ions are bridged by multi-group ligands (Ma *et al.*, 2000; Margeat *et al.*, 2004). In this paper, we report the synthesis and crystal structure determination of the title novel complex, (I), in which the Zn<sup>II</sup> and Ce<sup>III</sup> cations are bridged by  $\alpha$ -unsaturated carboxylate groups.



Complex (I) consists of a discrete tetranuclear  $Zn_2Ce_2$  core bridged by  $\alpha$ -methylacryl groups. The Zn and Ce ions are bridged by three carboxyl groups, while the symmetry-related Ce ions are linked by two carboxyl groups. Each Ce<sup>III</sup> ion is coordinated by nine O atoms from one chelating and five bridging carboxyl groups, and from a water molecule. The nine O atoms form a distorted tricapped trigonal prism, with atoms

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved



### Figure 1

A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. All H atoms have been omitted for clarity. [Symmetry code: (i) 1 - x, 1 - y, 1 - z.]

O2, O4, O6, O8, O8<sup>i</sup> and O9 forming a trigonal prism with atoms O7, O10 and O11 as the caps [symmetry code: (i) 1 - x, 1 - y, 1 - z]. Each Zn<sup>II</sup> ion in the complex is fourcoordinated by three O atoms from three carboxyl groups and an N atom from a pyridine group. The coordination polyhedron of the Zn ion is a slightly distorted tetrahedron.

In the molecule of (I), the water molecule also forms a hydrogen bond with an O atom of the carboxyl group, with O11···O9 2.666 (3) Å.

### **Experimental**

CeL<sub>3</sub>·H<sub>2</sub>O [860 mg, 2.0 mmol; HL is CH<sub>2</sub>C(CH<sub>3</sub>)COOH] and Zn(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O (297 mg, 1.0 mmol) were dissolved in H<sub>2</sub>O (15 ml), and the pH was adjusted to 4.0 using HL. Pyridine solution (1.0 ml, 1 M) was then added. After filtration, the filtrate was allowed to stand at room temperature and single crystals of (I) suitable for X-ray analysis were obtained after two weeks. Analysis, calculated: C 41.24, H 4.43, N 1.92%; found: C 41.20, H 4.31, N 2.01%. Spectroscopic analysis: IR (KBr, v, cm<sup>-1</sup>): 1454, 1561, 1647.

### Crystal data

| $[Zn_2Ce_2(C_4H_5O_2)_{10}(C_5H_5N)_2-$ | Z = 1                                     |
|-----------------------------------------|-------------------------------------------|
| $(H_2O)_2$ ]                            | $D_x = 1.596 \text{ Mg m}^{-3}$           |
| $M_r = 1456.05$                         | Mo $K\alpha$ radiation                    |
| Triclinic, $P\overline{1}$              | Cell parameters from 5723                 |
| a = 11.0788 (3) Å                       | reflections                               |
| b = 11.9997 (3) Å                       | $\theta = 3.0-27.4^{\circ}$               |
| c = 12.4604 (4) Å                       | $\mu = 2.33 \text{ mm}^{-1}$              |
| $\alpha = 99.3360(10)^{\circ}$          | T = 273 (2) K                             |
| $\beta = 106.3000 (10)^{\circ}$         | Prism, colourless                         |
| $\gamma = 101.5560 (10)^{\circ}$        | $0.30 \times 0.20 \times 0.17 \text{ mm}$ |
| V = 1515.09 (8) Å <sup>3</sup>          |                                           |
| Data collection                         |                                           |
| Rigaku RAXIS-RAPID                      | 6882 independent reflections              |
| diffractometer                          | 6062 reflections with $I > 2\sigma(I)$    |
| $\omega$ scans                          | $R_{\rm int} = 0.022$                     |
| Absorption correction: multi-scan       | $\theta_{\rm max} = 27.4^{\circ}$         |
| (ABSCOR; Higashi, 1995)                 | $h = -14 \rightarrow 14$                  |
| $T_{\min} = 0.578, T_{\max} = 0.673$    | $k = -15 \rightarrow 15$                  |
| 14 807 measured reflections             | $l = -16 \rightarrow 16$                  |

## Refinement

| Refinement on $F^2$             | $w = 1/[\sigma^2(F_o^2) + (0$                          |
|---------------------------------|--------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.024$ | + 0.3646P]                                             |
| $wR(F^2) = 0.056$               | where $P = (F_o^2 + F_o^2)$                            |
| S = 1.04                        | $(\Delta/\sigma)_{\rm max} = 0.003$                    |
| 6882 reflections                | $\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^-$ |
| 366 parameters                  | $\Delta \rho_{\rm min} = -0.42 \text{ e} \text{ Å}$    |
| H atoms treated by a mixture of |                                                        |
| independent and constrained     |                                                        |
| refinement                      |                                                        |
|                                 |                                                        |

(0.0308P)

### Table 1

Selected geometric parameters (Å, °).

| Ce-O2                 | 2.4183 (16) | Ce-O10                  | 2.5432 (17) |
|-----------------------|-------------|-------------------------|-------------|
| Ce-O4                 | 2.4614 (19) | Ce-O11                  | 2.6004 (19) |
| Ce-O6                 | 2.4474 (17) | Zn-O1                   | 1.931 (2)   |
| Ce-O7                 | 2.5674 (18) | Zn-O3                   | 1.956 (2)   |
| Ce-O8                 | 2.6385 (15) | Zn-O5                   | 1.9409 (19) |
| Ce-O8 <sup>i</sup>    | 2.5652 (15) | Zn-N1                   | 2.0658 (19) |
| Ce-O9                 | 2.5641 (17) |                         |             |
| O2-Ce-O4              | 76.57 (7)   | O7-Ce-O8                | 49.94 (5)   |
| O2-Ce-O6              | 79.16 (7)   | $O7-Ce-O8^{i}$          | 110.20 (5)  |
| O2-Ce-O7              | 78.35 (6)   | O7-Ce-O9                | 70.56 (6)   |
| O2-Ce-O8              | 128.29 (6)  | O7-Ce-O10               | 115.64 (6)  |
| O2-Ce-O8 <sup>i</sup> | 148.86 (6)  | O7-Ce-O11               | 114.14 (7)  |
| O2-Ce-O9              | 84.03 (6)   | O8–Ce–O8 <sup>i</sup>   | 66.97 (6)   |
| O2-Ce-O10             | 72.22 (6)   | O8-Ce-O9                | 79.42 (5)   |
| O2-Ce-O11             | 137.89 (7)  | O8-Ce-O10               | 125.93 (5)  |
| O4-Ce-O6              | 77.73 (7)   | O8-Ce-O11               | 75.34 (6)   |
| O4-Ce-O7              | 72.93 (7)   | $O8^{i}-Ce-O9$          | 71.75 (5)   |
| O4-Ce-O8              | 86.82 (6)   | $O8^{i}-Ce-O10$         | 77.28 (5)   |
| O4-Ce-O8 <sup>i</sup> | 134.43 (6)  | O8 <sup>i</sup> -Ce-O11 | 67.54 (6)   |
| O4-Ce-O9              | 141.34 (7)  | O9-Ce-O10               | 50.80 (5)   |
| O4-Ce-O10             | 144.57 (6)  | O9-Ce-O11               | 137.89 (6)  |
| O4-Ce-O11             | 70.14 (8)   | O10-Ce-O11              | 126.19(7)   |
| O6-Ce-O7              | 146.35 (6)  | O1-Zn-O3                | 115.89 (10) |
| O6-Ce-O8              | 144.42 (6)  | O1-Zn-O5                | 124.07 (9)  |
| O6-Ce-O8 <sup>i</sup> | 101.99 (5)  | O1-Zn-N1                | 98.50 (8)   |
| O6-Ce-O9              | 131.09 (6)  | O3-Zn-O5                | 112.78 (10) |
| O6-Ce-O10             | 80.30 (6)   | O3-Zn-N1                | 101.22 (8)  |
| O6-Ce-O11             | 69.32 (6)   | O5-Zn-N1                | 97.50 (8)   |
|                       |             |                         |             |

Symmetry codes: (i) 1 - x, 1 - y, 1 - z.

All non-H atoms were initially located in a difference Fourier map. All methyl H atoms were then constrained to an ideal geometry with C-H distances of 0.96 Å and  $U_{iso}(H) = 1.5U_{eq}(C)$ , but each group was allowed to rotate freely about its C-C bond. The  $=CH_2$  H atoms and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H distances in the range 0.93–0.96 Å and  $U_{iso}(H) = 1.2U_{eq}(C)$ . Water H atoms were restrained in idealized positions, with O-H distances of 0.85 (1) Å and  $H \cdots H$  distances of 1.39 (1) Å.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

This work was partly supported by the Analyse Fund of Zhejiang Province, China.

### References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Ma, B. Q., Gao, S., Bai, O., Sun, H. L. & Xu, G. X. (2000). J. Chem. Soc. Dalton Trans. pp. 1003-1004.

- Margeat, O., Lacroix, P. G., Costes, J. P., Donnadieu, B. & Lepetit, C. (2004). *Inorg. Chem.* 43, 4743–4750.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Tang, J. K., Li, Y. Z., Wang, Q. L., Gao, E. Q., Liao, D. Z., Jiang, Z. H., Yan, S. P., Cheng, P., Wang, L. F. & Wang, G. L.(2002). *Inorg. Chem.* 41, 2188–2192.
  Wu, B., Lu, W. M. & Zheng, X. M. (2003). *J. Coord. Chem.* 56, 65–70.